Involvements of galanin and its receptors in antinociception in nucleus accumbens of rats with inflammatory pain
نویسندگان
چکیده
This study tested the hypothesis that antinociceptive effects of galanin and its receptors in nucleus accumbens (NAc) of rats with inflammatory pain provoked by subcutaneous injection of 0.1 ml of 2% carrageenin into the sole of the rat's left hindpaw. The hindpaw withdrawal latencies (HWLs) in response to thermal and mechanical stimulation significantly decreased in bilateral hindpaws at 3 and 4 hour after a subcutaneous injection of carrageenin. However intra-NAc injection of 2 and 3 nmol, but not 1 nmol of galanin markedly induced an increase in the HWLs in a dose-dependent way. Western blot also showed, that the expression of galanin receptor 1 (GalR1) and galanin receptor 2 (GalR2) were significantly upregulated in NAc at 3 hour after a subcutaneous injection of carrageenin. In addition, the rats were intra-NAc injected galanin, 5 min later following by intra-NAc injection of galanin receptor antagonist galantide, the galanin-induce antinociceptive effects were suppressed by galantide. The results demonstrated that galanin and its receptors might be involved in antinociception in the NAc of rats with inflammatory pain.
منابع مشابه
Glutamate Receptors in Nucleus Accumbens Can Modulate Canabinoid-Induced Antinociception in Rat’s Basolateral Amygdala
Introduction: It has been shown that administration of WIN55,212-2, a cannabinoid receptor agonist, into the basolateral amygdala (BLA), dose-dependently increases the thermal latency to withdrawal in the tail-.ick test and decreases pain related behaviors in both phases of the formalin test. Recent human and animal imaging data suggest that the nucleus accumbens (NAc) is an important neural su...
متن کاملIntra-accumbal orexin-1 receptors are involved in antinociception induced by stimulation of the lateral hypothalamus in the formalin test as an animal model of persistent inflammatory pain
Orexin, mainly produced by orexin-expressing neurons in the lateral hypothalamus (LH), plays an important role in pain modulation. Moreover, it is shown that the nucleus accumbens (NAc) is one of the important areas involved in this modulation. Orexin-1 (OX1) and orexin-2 (OX2) receptors are densely distributed in the NAc. The study investigated the involvement of OX1 receptors in the NAc on an...
متن کاملIntra-accumbal orexin-1 receptors are involved in antinociception induced by stimulation of the lateral hypothalamus in the formalin test as an animal model of persistent inflammatory pain
Orexin, mainly produced by orexin-expressing neurons in the lateral hypothalamus (LH), plays an important role in pain modulation. Moreover, it is shown that the nucleus accumbens (NAc) is one of the important areas involved in this modulation. Orexin-1 (OX1) and orexin-2 (OX2) receptors are densely distributed in the NAc. The study investigated the involvement of OX1 receptors in the NAc on an...
متن کاملContribution of the Nucleus Cuneiformis to the Antinociceptive Effects of Systemic Morphine on Inflammatory Pain in Rats
Introduction: The role of midbrain reticular formation, which includes the nucleus cuneiformis (NCF), as a crucial antinociceptive region in descending pain modulation has long been investigated. In this study, we tried to highlight the role of NCF in morphine-induced antinociception in formalin-induced pain model in rats. Methods: A total of 201 male Wistar rats weighing 260-310 g were used in...
متن کاملInvolvement of central opiate receptors in modulation of centrally administered oxytocin-induced antinociception
Objective(s): Oxytocin is involved in modulation of many brain-mediated functions. In the present study, we investigated the central effects of oxytocin and its receptor antagonist, atosiban on inflammatory pain. The contribution of opiate receptors was explored using non-selective and selective antagonists. Materials and Methods: The fourth ventricle of the brain of anesthetized rats was impla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience Research
دوره 97 شماره
صفحات -
تاریخ انتشار 2015